La teoria delle stringhe nasce come uno dei tentativi più ambiziosi della fisica teorica: descrivere tutte le particelle e tutte le forze della natura come manifestazioni diverse di un unico oggetto fondamentale. Con questa teoria, gli elettroni, i quark, ..., fino ad arrivare al gravitone, non sono entità puntiformi, ma minuscole stringhe che vibrano. Ogni modalità di vibrazione corrisponde a una particella diversa esattamente come la corda di uno strumento che produce note differenti a secondo di come oscilla.
Per rendere coerente questa idea, la teoria delle stringhe introduce concetti assolutamente radicali: dimensioni extra dello spazio, geometrie complesse e un livello di astrazione che va ben oltre all'esperienza quotidiana e dietro questa costruzione matematica altamente sofisticata si nasconde però un principio più antico e profondo: il comportamento quantistico dei sistemi fisici.
Se quindi mettiamo temporaneamente da parte le dimensioni extra e l'obiettivo dell'unificazione, si scopre che il cuore della teoria delle stringhe batte allo stesso ritmo della meccanica quantistica. In entrambi i casi, ciò che viene descritto non è un oggetto materiale nel senso classico, ma uno stato dinamico e nella meccanica quantistica questo stato è rappresentato dalla cosiddetta "funzione d'onda".
La funzione d'onda non è un'onda fisica che oscilla nello spazio o come un'onda sull'acqua. È un anch'essa un oggetto matematico che contiene tutte le informazioni possibili relative ad un sistema quantistico. La funzione d'onda non dice dove si trova una particella, ma ci dice quali sono le probabilità di trovare questa particella in un particolare stato quando viene effettuata una misura. Questo è il fatto: Prima dell'osservazione la particella non possiede una posizione, una velocità o un'energia definite perché "esiste" in una "sovrapposizione di possibilità".
Questo è uno degli aspetti più controintuitivi della meccanica quantistica. Cioè, finché non si misura il sistema, la funzione d'onda evolve in modo deterministico secondo le equazioni della teoria "descrivendo una continua interferenza di possibilità" e solo nel momento nel quale si misura avviene il cosiddetto collasso della funzione d'onda: tra tutte le possibilità descritte, una sola diventa reale, mentre tutte le altre scompaiono.
Questo fatidico collasso non è un processo fisico nel senso classico, e non è neanche un'onda che si spezza, è una transizione concettuale, cioè passa da una "situazione di probabilità" a quella dei "risultati osservati". Questo significa che prima della misura la funzione d'onda ci dice quello che potrebbe accadere ed esattamente dopo la misura il sistema passa in uno stato perfettamente definito e quindi in una sola delle possibilità. Questo passaggio ha sollevato - e continua a sollevare - profonde questioni filosofiche sul ruolo dell'osservatore, sulla natura della realtà e sul significato stesso di "esistere".
In questo contesto la teoria delle stringhe può essere vista come una generalizzazione estrema della meccanica quantistica. Invece di applicare la funzione d'onda a particelle puntiformi, la applica a oggetti estesi che vibrano. Ma è importante vedere che il principio resta invariato: ciò che la teoria descrive non sono cose solide e ben definite, bensì stati, oscillazioni e possibilità.
Ritornare dalla teoria delle stringhe alla meccanica quantistica "pura" significa quindi tornare all'essenziale. Significa riconoscere che al livello più profondo la natura non è fatta di oggetti, ma di processi. Le stringhe, con tutta la loro eleganza matematica, non fanno che amplificare una lezione già inscritta nei quanti e cioè che il mondo fondamentale non è statico, non è localizzato e non è definitivo. Quello che ci dice la meccanica quantistica è che tutto è in una vibrazione continua che diventa realtà solo quando viene osservato.